DOI: 10.17689/psy-2016.2.10

УДК 159.953.6









Characterization of Working Memory Singlet Errors

© 2016  Ershova Regina Viacheslavovna*, Tarnow Eugen**,

*PhD in psychology, professor of Moscow Region State Socio-Humanitarian Institute. 

Head of the department of psychology (Kolomna, Russia),

**PhD, independent researcher (Nj, USA)







Annotation: Working memory errors of 193 Russian college students taking the Tarnow Unchunkable Test, utilizing double digit items on a visual display, were analyzed. In three-item trials with at most one error per trial, single incorrect tens and ones digits (“singlets”) were overrepresented and made up the majority of errors which led to a proposed structure of working memory, short term memory and long term memory [Ershova & Tarnow, 2016].  Using a new causality diagram approach we estimate true old errors to occur in about 80% of the singlet errors.  We find that the singlet errors can originate in the corresponding item from the previous trial but can also originate in an item from the present trial displayed before or after (but before the recall). Three mechanisms for the singlet errors were considered and none could be excluded. We find working memory regularities which suggest that attention deficits and surpluses may be quantifiable in two parameters: the exponential increase in single errors as a function of the order of presentation and the number of consecutive double errors.

Keywords: working memory errors, integer representation in working memory, memory map, -pointer.











Характеристика ошибок рабочей памяти

© 2016 Ершова Регина Вячеславовна*, Eugen Tarnow**

*доктор психологических наук, профессор, 

Государственный социально-гуманитарный университет, (г.Коломна, Россия)

** PhD, независимый исследователь,

Нью-Джерси, США)






Аннотация: В статье представлены результаты исследования рабочей памяти 193 студентов с использованием теста рабочей памяти Тарноу. В сериях, состоящих из 3-х двузначных чисел, большее количество ошибок вязан с неправильным воспроизведением либо цифры десятка, либо цифры единицы, что позволило предположить наличие структуры рабочей памяти (Ершова, Тарноу, 2016). Создание графической модели (каузальной диаграммы) позволило доказать, что в 80% случаев ошибки воспроизведения объясняются интерференцией предшествующих и последующих чисел. Было обнаружено, что ошибка в одной из цифр воспроизводимого ряда может происходить по причине «наложения» чисел предшествующей серии или предшествующих чисел актуального ряда. Ни один из трех описанных механизмов ошибочного воспроизведения не может быть признан несущественным. Мы также обнаружили, что что дефицит и избыточность внимания в процессе функционирования рабочей памяти могут проявляться через два параметра: экспоненциальное увеличение одиночных ошибок как функции от порядка представления чисел и числа последовательных двойных ошибок.

Ключевые слова: рабочие ошибки памяти, целое представление в оперативной памяти, карта памяти, -указатель.




Introduction. Working memory (WM) is considered part of a multi-components model of short-term memory (see, for example, Ershova & Tarnow, 2016), a human ability to work with information which plays an important role in learning from kindergarten to the college years [Alloway, 2010].

We recently introduced a technological development: probing working memory with items that are relatively unchunkable. This led to a proposed structure of working memory, short term memory and long term memory [Ershova & Tarnow, 2016]. This contribution includes a further analysis of well defined errors: those that only occur once per trial.  We will consider where do the errors come from?  How do they vary with serial position?  

The results of our investigation may be important for further understanding the structure of WM, for designing new empirical studies to advance theory and research in this area, as well as measuring the effectiveness of the methodological tools needed to test WM.  One can also imagine this venue to be important for pedagogy  (e.g. writing web pages and text books with the specific purpose in mind of minimizing WM errors so as to maximize information uptake).  We will also argue that it may have a profound importance in understanding part of the phenomenon of dyslexia and may be used to quantify attention. 

Method. We present data from a study of university students aged 17 to 24.

The Tarnow Unchunkable Test (TUT) used in this study separates out the WM component of free recall by using particular double-digit combinations which lack intra-item relationships [Tarnow, 2013].  The TUT was given via the internet using client-based JAVAScript to eliminate any network delays.  The instructions and the memory items were displayed in the middle of the screen.  Items were displayed for two seconds without pause.  The trials consisted of 3 or 4 items after which the subject was asked to enter each number remembered separately, press the keyboard enter button between each entry and repeat until all the numbers remembered had been entered.  Pressing the enter button without any number was considered a "no entry".  The next trial started immediately after the last entry or after a "no entry". There was no time limit for number entry. Each subject was given six three item trials and three four item trials in which the items are particular double-digit integers.

Sample. 193 Russian undergraduate students of the State University of Humanities and Social Studies (121 (63%) females and 71 (37%) males, mean age was 18.8 years) participated in the study for extra credit. Each participant was tested individually in a quiet room. An experimenter was present throughout each session.

One record was discarded – the student had only responded once out of a possible thirty times.

Terms. The terms used in this article are as follows:  the displayed items are integers made up of two digits, the subjects create entries. A singlet is the combination of a position and a digit and can be either the ones digit or the tens digit.  A trial consists of 3 or 4 displayed items and the overall order of the items is the presentation order. If an item or an entry is divisible by N, N is a factor.

Results. Total number of errors. The number of errors is much larger in the 4-item test (44% of all entries) than the 3-item test (15% of all entries), because 4 items exceeds the average capacity of WM and this leads to problems managing the limited capacity [Baddeley, 2001]. 

Errors by serial position.

The errors are the fewest for the first item in each group and, on average, increases monotonically till the last item in a group [Ershova, & Tarnow, 2016].  This is true for almost every trial, as can be seen in Fig. 1. The increase is linear for the 3 item test and logarithmic for the 4 item test [Ershova, & Tarnow, 2016].