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Annotation: Working memory errors of 193 Russian college students taking the 

Tarnow Unchunkable Test, utilizing double digit items on a visual display, were 

analyzed. In three-item trials with at most one error per trial, single incorrect tens and 

ones digits (“singlets”) were overrepresented and made up the majority of errors 

which led to a proposed structure of working memory, short term memory and long 

term memory [Ershova & Tarnow, 2016].  Using a new causality diagram approach 

we estimate true old errors to occur in about 80% of the singlet errors.  We find that 

the singlet errors can originate in the corresponding item from the previous trial but 

can also originate in an item from the present trial displayed before or after (but 

before the recall). Three mechanisms for the singlet errors were considered and none 

could be excluded. We find working memory regularities which suggest that attention 

deficits and surpluses may be quantifiable in two parameters: the exponential increase 

in single errors as a function of the order of presentation and the number of 

consecutive double errors. 

Keywords: working memory errors, integer representation in working memory, 

memory map, -pointer. 
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Аннотация: В статье представлены результаты исследования рабочей 

памяти 193 студентов с использованием теста рабочей памяти Тарноу. В 

сериях, состоящих из 3-х двузначных чисел, большее количество ошибок вязан 

с неправильным воспроизведением либо цифры десятка, либо цифры единицы, 

что позволило предположить наличие структуры рабочей памяти (Ершова, 

Тарноу, 2016). Создание графической модели (каузальной диаграммы) 

позволило доказать, что в 80% случаев ошибки воспроизведения объясняются 

интерференцией предшествующих и последующих чисел. Было обнаружено, 

что ошибка в одной из цифр воспроизводимого ряда может происходить по 

причине «наложения» чисел предшествующей серии или предшествующих 

чисел актуального ряда. Ни один из трех описанных механизмов ошибочного 

воспроизведения не может быть признан несущественным. Мы также 

обнаружили, что что дефицит и избыточность внимания в процессе 

функционирования рабочей памяти могут проявляться через два параметра: 

экспоненциальное увеличение одиночных ошибок как функции от порядка 

представления чисел и числа последовательных двойных ошибок. 

Ключевые слова: рабочие ошибки памяти, целое представление в 

оперативной памяти, карта памяти, -указатель. 

 

Introduction. Working memory (WM) is considered part of a multi-

components model of short-term memory (see, for example, Ershova & Tarnow, 

2016), a human ability to work with information which plays an important role in 

learning from kindergarten to the college years [Alloway, 2010]. 
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We recently introduced a technological development: probing working 

memory with items that are relatively unchunkable. This led to a proposed structure 

of working memory, short term memory and long term memory [Ershova & Tarnow, 

2016]. This contribution includes a further analysis of well defined errors: those that 

only occur once per trial.  We will consider where do the errors come from?  How do 

they vary with serial position?   

The results of our investigation may be important for further understanding the 

structure of WM, for designing new empirical studies to advance theory and research 

in this area, as well as measuring the effectiveness of the methodological tools 

needed to test WM.  One can also imagine this venue to be important for pedagogy  

(e.g. writing web pages and text books with the specific purpose in mind of 

minimizing WM errors so as to maximize information uptake).  We will also argue 

that it may have a profound importance in understanding part of the phenomenon of 

dyslexia and may be used to quantify attention.  

Method. We present data from a study of university students aged 17 to 24. 

The Tarnow Unchunkable Test (TUT) used in this study separates out the WM 

component of free recall by using particular double-digit combinations which lack 

intra-item relationships [Tarnow, 2013].  The TUT was given via the internet using 

client-based JAVAScript to eliminate any network delays.  The instructions and the 

memory items were displayed in the middle of the screen.  Items were displayed for 

two seconds without pause.  The trials consisted of 3 or 4 items after which the 

subject was asked to enter each number remembered separately, press the keyboard 

enter button between each entry and repeat until all the numbers remembered had 

been entered.  Pressing the enter button without any number was considered a "no 

entry".  The next trial started immediately after the last entry or after a "no entry". 

There was no time limit for number entry. Each subject was given six three item trials 

and three four item trials in which the items are particular double-digit integers. 

Sample. 193 Russian undergraduate students of the State University of 

Humanities and Social Studies (121 (63%) females and 71 (37%) males, mean age 
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was 18.8 years) participated in the study for extra credit. Each participant was tested 

individually in a quiet room. An experimenter was present throughout each session.  

One record was discarded – the student had only responded once out of a 

possible thirty times. 

Terms. The terms used in this article are as follows:  the displayed items are 

integers made up of two digits, the subjects create entries. A singlet is the 

combination of a position and a digit and can be either the ones digit or the tens digit.  

A trial consists of 3 or 4 displayed items and the overall order of the items is the 

presentation order. If an item or an entry is divisible by N, N is a factor. 

Results. Total number of errors. The number of errors is much larger in the 

4-item test (44% of all entries) than the 3-item test (15% of all entries), because 4 

items exceeds the average capacity of WM and this leads to problems managing the 

limited capacity [Baddeley, 2001].   

Errors by serial position. 

The errors are the fewest for the first item in each group and, on average, 

increases monotonically till the last item in a group [Ershova, & Tarnow, 2016].  This 

is true for almost every trial, as can be seen in Fig. 1. The increase is linear for the 3 

item test and logarithmic for the 4 item test [Ershova, & Tarnow, 2016].  
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Fig. 1.  Errors by order of item presentation.  Upper panel shows 3-item errors 

and the lower panel 4-item errors. 

 

As it seen from the figure, with the exception of the last 4-item trial, the errors 

all increase monotonically from the first to the last items. 

 Error categories are not mutually exclusive.  For example, if the displayed 

items are 16 and 29, entries such as 19 and 26 can be errors in the ones digits or, 

reversing the two entries, errors in the tens digits; and if 19 had been displayed in an 

earlier set it could have been an “old” error.  

To keep the errors as well defined as possible we mostly limit our investigation 

to three item trials with single errors in each trial.  Out of a total of 1146 three item 

trials, 19 trials included at least one “no entry”, 248 trials had a single errors, 90 had 

double errors and 13 of the trials had triple errors.  We will focus on the 248 trials 

with a single error.  

More complex multi-error trials or four item trials, in which there may be 

interaction between the errors, will be left for the future analysis. 

The restriction to single errors changes the probability of errors as a function of 

the order of presentation: instead of a linear rise in errors [Ershova, & Tarnow, 2016], 

the rise is exponential (Fig.2). 
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Fig 2. Relative probability of single error as a function of the order of 

presentation within a trial. The numbers add up to 1. 

 

In Fig. 3 is displayed the probability of a serial position being erroneous if 

there are two incorrect items.  The first serial position is typically correct but the 2nd 

and 3rd positions are equally likely to be erroneous (chi-square p>0.68). 

If these errors derive from a lack of attention, the probability of losing just 

enough attention to make an error is exponential with the serial position within a trial; 

since the probability of two errors per trial is equally high for the second and third 

serial positions within each trial, attention might sometimes be lost at the second item 

and not regained until the next trial (this is reminiscent of Craik & Lockhart`s levels 

of processing framework in which the last items in the list have lass chance to be 

recalled due to superficial processing and lack of attention) [Craik & Lockhart 

,1972].  
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Fig. 3. Relative probability of error if there are two errors in a trial (the 

probabilities add up to 2 items). 

Singlet Errors Are Old. The number of errors of just the tens (ones) digit is 

41% (38%) [Ershova & Tarnow, 2016].  A simulation of 12,000 entries in which the 

third entry was a random number between 21-99 had a much lower number of such 

errors – 9% (12%).  Thus, test errors are much more likely than random numbers to 

consist of “singlet” errors. 

Are these singlet errors random or old (in which previously displayed singlets 

appear in the error)?  This turns out to be a rather complex question to answer and we 

ask the reader for patience.  

We examined the probability of error as a function of the distance between the 

position of the error singlet and the position of the identical displayed singlet in a 

“causality diagram”.  Negative distances (in which the error shows up before the item 

is displayed) correspond to chance errors and positive distances correspond to errors 

from “old” items as well as chance errors. In the causality diagram the order of an 

entry is defined as 0.5 added to the order of presentation of the last displayed item. 

With the item order being 1-3, 4-6, … 16-18 the possible positions of errors in our 

test are 3.5, 6.5, 9.5, 12.5, 15.5 and 18.5 (since they occur between item 

presentations) and the distances range from -14.5 to 17.5.  Negative distances are 

assumed to be associated with the first presentation of the singlet and positive 

distances are assumed to be the last prior presentation of the singlet. If an event is 

associated with both negative and positive distances, the negative distance is 

discarded.  This construct, and the fact that we are working with finite lists and 

particular sets of displayed numbers, can make random entries seem causal 

(“contiguity” plots, which tend to exaggerate contiguity, are subject to similar issues 

as discussed in Tarnow, 2015a).   

These artifacts can be seen in Fig. 4, which displays the causality diagram for 

errors in which either the tens or ones digits, but not both were erroneous from 

12,000 random entries for the third item.  In both cases, the diagram has a peak at low 

positive distances which makes it seem as if there are old errors present.  There are 
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also nodes for distances with no errors. For example, there is a node at 0.5, 

corresponding to the impossibility of making an error in the third item which is 

identical to the third item itself.   
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Fig 4. Causality diagrams of errors correspond to random entries in the third 

position. 

In Fig. 5 is shown the causality diagrams for errors consisting of items in 

which either the tens or the ones digits but not both were erroneous (top row) as well 

as the corresponding diagrams for 12,000 random entries for the third item with the 

same scale (2nd row), the ratio between the test errors and random errors (3rd row) and 

the optimal difference between test and random distributions. Note that the 

experimental data (top row) are very different from chance (2nd row) in the largest 

peaks which center at distances of 3.5 for the tens digit and 2.5 for the ones digit.  

Second, the experimental data are also different from chance for the number of errors 

at negative, strictly non-causal, distances.  We can estimate the number of truly old 

errors in the two test graphs by using the negative distance frequency as a measure of 

the non-causal (random) errors and remove this “background” from positive distance 

frequencies. We fix the multiplicative parameter in front of the background 

subtraction so there are no causal errors for the random case.  This gives us an 

estimate of 67% true old errors for the tens digit and 90% true old errors for the ones 

digit.  Another estimate can be obtained by removing the random distribution from 

the test distribution and sum the absolute values, using a normalized factor so that the 

sum of the absolute values of the differences is minimized (bottom panels in Fig. 5).  

This gives us 91% true old errors for the tens digit and 75% true old errors for the 
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ones digit.  If we average the two methods we arrive at 79% true old errors for the 

tens digit and 82% true old errors for the ones digit.  One of the tens digits was never 

displayed (and therefore does not appear in the causality diagrams) but nevertheless 

showed up in errors (4% errors).  5% of old items appeared intact.  16% were non-old 

item errors for which both digits were incorrect. 
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Fig. 5.  Causality diagrams of errors. Upper row correspond to experimental 

data, 2nd row correspond to random entries in the third position, 3rd row correspond 

to the ratio of test to random and the bottom row displays the optimal difference 

between test and random distributions resulting in an estimate of true old errors.  The 

left (right) panels display the number of errors from entered tens (ones) digits. 

The sources of the tens digit errors are more commonly the 2nd or 3rd items of 

the previous trial or the first item of the current trial (corresponding to distances of 

4.5, 3.5 and 2.5, respectively) while the sources of the ones digit errors are more 

commonly the 3rd item of the previous trial or the 1st or 2nd items of the current trial 

(corresponding to distances of 3.5, 2.5 and 1.5, respectively).  This difference can 

also be seen in Fig. 6 in which the difference in the -number of errors as a function of 

distance is displayed (top panel) together with the same diagram for random numbers 

(bottom panel).  Notice that the noise level in the random graph seems higher than for 

the experimental data, suggesting that the structure in the experimental data is real.  

This indicates that the two singlets are not only separate but also treated differently. 

Equivalently, sometimes the presented double-digit items are not each one chunk.  
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Fig. 6.  Causality diagrams of difference between tens and ones digit errors for 

test data (top) and random data (bottom). Notice the difference in scale and the real 

structure present in the test data. 

Old errors make some the trials effectively longer than three items.  Say a tens 

digit or a ones digit was read in and is destined to become the source of a singlet error 

after N consecutive correct entries.  The length of that sequence is then N+1. Thus, 

for most subjects WM capacity is 3 items [Ershova & Tarnow, 2016] which means 

most distances in Fig. 5 should be 3.5 or lower which is indeed the case for the ones 

errors though the tens errors extend to 4.5 (though it might be limited to those 

subjects with WM capacity of 4). 

Do these errors correlate with behavior?  For example, are the subjects aware 

these entries are errors?  One way to gauge this is to check whether the response time 

increases for erroneous entries [Tarnow, 2015].  To make the comparison well 

defined, we limited the comparison to trials in which the first two items had been 

entered correctly.  We performed a one-way ANOVA on the logarithm of the third 

response time (to make the distribution a normal instead of a lognormal distribution) 

for the correct and error distributions.  The result was F (1,912) = 14.3, p = 1.63E-04.  

It is a statistically significant difference but rather small.  The average response times 

for errors (correct entries) is 7.8 (6.9) seconds which amounts to only a quarter of a 

standard deviation.   
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Structure of Working Memory. The over-representation of tens and ones 

digit errors compared to chance resulted in the memory model of Fig 7.  

 

 

Fig 7. Model of working memory using information from errors. Pointers point 

to digits within the tens or one digit maps and the pointer collections forms the 

integers items. 

How does the singlet error occur, what is the mechanism of interference?  If 

there are three separate sets of pointers to digits that are read-in and emptied in 

sequence and the errors occur during the presentation – only one of the displayed 

singlets is read in and the old singlet from the previous presentation remains - then 

the erroneous singlets should originate in the previous trial and if the error entry is the 

third entry, the singlet should be the particular singlet from the third entry of the 

previous trial.  In Fig. 5, upper panel, we would see single peaks at the distance 3.5.   

3.5 is indeed a common distance but so are 2.5 as well as 4.5, contradicting this 

picture; the cannot be the only mechanism.  

If the new singlet is not read in [or read in below the threshold needed for a 

WM items to stay active] and the entry is instead selected from activated singlets 

from any of the three items, then this selection can occur either at the time of the 

reading of the items or at the time of the recall entry.  If it is the former, singlets 

displayed later should never occur in the errors, if it is the latter the errors should 

involve, equally likely, any of the singlets presented before the entries begin.  For 

errors in the third item there would be no possibility of a later singlet being 

substituted for the missing singlet, for errors in the first item there would be no 
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possibility of an earlier item being substituted for the missing singlet.  In Fig. 8 is 

displayed the causality diagrams of the tens and ones digits using the second item in 

each trial.  The distance 0.5 corresponds to the erroneous digit being selected from an 

item displayed after the second item.  Thus probably some of the tens errors are 

created after the next item is read in, the ones errors may just be statistical noise.   
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Fig. 8.  Causality diagrams of difference between tens and ones digit errors 

using the entry corresponding to the second item in each trial only. Notice that for 

both ones and tens digits the distance 0.5, corresponding to the erroneous digit 

coming from the third item in each trial, is large. 

 

Errors as a function of trial. One might expect that the error rate for each trial 

set as displayed in Fig. 10 would be constant.  However, the fifth set seems to have a 

rather large error rate.  This is borne out by a one way ANOVA (p<1.3*10-10) of the 

underlying data and chi-square of the sums<5*10-8. If we further subdivide into 

single, double and triple errors we have the results (see Fig. 11) – each subdivision 

deviates from the null hypothesis.  Thus, the particulars of the displayed items matter 

greatly and have different impact on single, double and triple errors. 
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Fig. 10.  Errors as a function of trial [three items per trial, six trials in the 

experiment]. Chi-square of totals <5*10-8 
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Fig. 11. Errors by type as a function of trial [three items per trial, six trials in 

the experiment]. Chi-squares<0.039, 0.048, 2.6*10-8 for single, double and triple 

errors. 

Discussion. In order to simplify the study of the errors, avoiding error-error 

interactions and keeping errors well defined, we limited the selection to those of three 

item trials in which only one error occurred.   

We found that the majority of singlet errors are “old”, stemming from items 

displayed earlier, the sequence typically being within the WM capacity determined 

earlier [Ershova & Tarnow, 2016], which reaffirms the WM capacity measure. We 

were able to investigate the mechanisms of proactive interference. We were not able 

to eliminate any of these three mechanisms: a single could be kept from the previous 

item and then remain in spite of the new item, a choice of the singlet could be made 

from an item displayed either before or after the new item (but before the recall). 
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We found that the tens digit errors and the ones digit errors are not following 

the same history: old tens digit errors can be traced to items displayed a little earlier 

than old ones digit errors.  We also found that the response times were statistically 

significantly larger for responses with errors but that the difference was small, 

perhaps too small for the subjects to be aware of making these errors. 

The number of errors (in the three item trials with a single error) increased 

exponentially with serial position within each trial; it is not clear why.  If these errors 

derive from a lack of attention, the probability of losing just enough attention to make 

an error is exponential with the serial position within a trial. Since the probability of 

two errors per trial is equally high for the second and third serial positions within 

each trial, attention might sometimes be lost at the second item and not regained until 

the next trial. Both of these properties may be useful in quantifying attention deficits 

and surpluses in clinical settings. 

 Limitations. We have limited ourselves to analyzing only trials with three 

items with single errors, it could be that trials with multiple errors or with a different 

number of items would show evidence of a different memory architecture.  More 

fundamentally, had we studied other items [listed in Cowan, 2012, 2014], a different 

structure may have emerged as well. 
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